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The search for higher symmetry in string theory

By E. WiTTEN

School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton,
New Jersey 08540, U.S.4.

Some remarks are made about the nature and role of the search for higher symmetry
in string theory. These symmetries are most likely to be uncovered in a mysterious
‘unbroken phase’, for which (2 + 1)-dimensional gravity provides an interesting and
soluble model. New insights about conformal field theory, in which one gets ‘out of
flatland’ to see a wider symmetry from a higher-dimensional vantage point, may offer
clues to the unbroken phase of string theory.

1. SEARCH FOR THE UNBROKEN PHASE

I thought I might begin by stating my general outlook on string theory.

In my opinion, the basic challenge in string theory is not, as sometimes said, to ‘understand
non-perturbative processes in string theory’. In fact, the basic problem does not lie in the
quantum domain at all. The basic problem, now and probably for many years to come, is to
understand the classical theory properly.

Understanding the classical theory means above all understanding the geometrical ideas
that parallel those of general relativity. It is indeed a key aspect of the fascination of string
theory that in string theory, general relativity is modified even in the classical domain. The key
geometrical ideas upon which string theory should be founded must be worthy successors to the
- principle of equivalence and riemannian geometry, and they must lead to what we now know
of as string theory as ineluctably as the principle of equivalence leads to general relativity.

Not only is the search for geometric understanding crucial, it is the key area where progress
can be expected in the next stage of development. The advance in viewpoint that we need is
probably big, but perhaps no bigger than the advance made long ago when ‘dual models’ were
reinterpreted as ‘string theories’. I suppose my basic outlook on physics is that conceptual
problems such as those cited above have answers, and these answers are eventually found by
human beings. One might not say the same for dynamical problems.

So the central task is to

(i) find the right degrees of freedom;

(ii) find the right invariance group; and

(iii) formulate the right lagrangian.

These are, of course, the usual questions of string field theory, and I consider them to be the
right questions though string field theory as we know it is very likely not based on the right
degrees of freedom.

In thinking about these matters, it is sobering to realize how little we know with certainty.
Thus it is often said that ‘string theory is a theory of extended objects’, and Riemann surfaces
are often felt to play a crucial role. But the 1/N expansion of quantum chromodynamics (Qcp)
may offer a cautionary tale. As we have long known, Qcp with SU(N) gauge group has an
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expansion formally very similar to the topological expansion of string theory, with mesons and
glueballs playing the role of open and closed strings, and a mesh of planar gluons playing the
role of the string world sheet. In this picture, it is confinement of colour that creates effective
‘Riemann surfaces’. We do not know of a simple Veneziano-like description of the 1/N
expansion of Qcp, but one may exist. (And if there is an area of Qcp theory where a real
breakthrough can be made, this is it. Certainly, the search for such a description has been one
of the main motivations of the Soviet school of string theorists, throughout the 1980s.)

Qcp from this viewpoint looks like a ‘theory of extended objects’, all based on Riemann
surfaces. Yet conceptual understanding from this point of view is probably hopeless. It is
necessary to learn that the correct degrees of freedom are quarks and gluons, before learning
that the correct notion is gauge theory.

At least in thought experiments, one can neatly see the world of extended objects and
Riemann surfaces come to an end in Qcp, by heating to the deconfinement temperature, 7.
Since the early work on the deconfinement transition (Polyakov 1978; Susskind 1979) it has
been suspected that a similar phenomenon may be occurring in string theory at the so-called
Hagedorn temperature, Ty;. There are a variety of reasons to suspect that this may be so. One
argument that I find fairly convincing is that in string theory, the free energy begins in genus
one if 7' < Ty, but receives a genus zero contribution if 7' > T;; (Atick & Witten 1988). This
parallels an analogous behaviour in Qcp.

Another reason to suspect the occurrence in string theory of an analogue of the deconfinement
transition is that, on the face of it, the building blocks that we are currently using in our
attempts to describe string theory do not seem adequate for the job. String fields are too messy,
and two-dimensional field theory is too singular. Let me pause for a word on the latter point.
We recall that unitary conformal field theories come in finite-parameter families (the number
of parameters being the number of relevant operators). This is a very different sort of thing
from what we want to describe time-dependent processes, where it should be possible to excite
arbitrary massive modes of the string. I believe that this is a crucial issue, and in no way a
technicality. In any serious attempt to study lorentzian signature sigma models with time-
dependent fields, the singularities of quantum field theory will appear with a vengeance, with
operators of arbitrarily negative dimension appearing on the scene. It is significant that this
subject has been so little investigated in print.

General relativity should again offer the paradigm of what we want. The basic concept of
a metric is flexible and elementary. Choosing a metric does not require solving any equations.
We should expect to one day develop string theory with tools as flexible and elementary as the
concept of a riemannian metric. This may be possible only by understanding the ‘unbroken
phase’ of string theory, with the higher symmetries restored. What properties do we expect of
this phase?

There are many reasons to believe that in string theory there is no such thing as distances
less than the fundamental length 4/a’. Among the reasons for believing this are the duality in
distance between radius R and radius '/ R, the fact that (as in the paper by David Gross, this
Symposium) one cannot probe distances below 4/a’ by using high-energy, fixed-angle
scattering, and the fact that the growth of the free energy above the Hagedorn temperature
seems to be slower than in field theory. What one might imagine would be a world in which
at distances above 4/a’, normality prevails, but at distances below 4/a’, not just physics as we
know it but local physics altogether has disappeared. There will be no distance, no times, no
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energies, no particles, no local signals — only differential topology, or its string theoretic
SuCcessor.

To clarify this a bit, let us note that one often thinks of four-dimensional general relativity,
in the phase we live in, as a system in which the space-time symmetries are unbroken. On
reflection, though, one sees that the non-zero expectation value of the metric, g,, ~ 7,,, violates
local general covariance and leaves only the global Poincaré symmetries. To restore local general
covariance, one would need {g,,» = 0. But in the absence of an expectation value of the metric,
there is no notion of distance, time or energy, and there is no way to have particles or local
signals because there is no way for these to stay inside the light cone.

In general relativity, we are usually satisfied with unbroken global symmetry. We do not
usually hunger to restore the local symmetry and thus bring physics to an end. In string theory,
however, the graviton is just one of a tower of states. Our crucial task is to understand the
symmetries associated with the massive states, the masses presumably arising by a Higgs-like
mechanism. In string theéry, an expectation value of the metric breaks the higher symmetries
even as global symmetries. To restore the higher symmetries of the string even as global
symmetries, one needs {g,,» =0, and in this case general covariance, and the whole higher
invariance group of which it is part, is restored as a local symmetry. As we have already noted,
restoration of general covariance makes local physics impossible, and this is why I believe that
string theory must be understood in a framework in which locally there is nothing there.

The most concrete picture I can offer of such local symmetry restoration comes in (2+1)-
dimensional gravity. Before entering into this, let us ask why (34 1)-dimensional gravity is
unrenormalizable. I write the lagrangian in vierbein formalism:

Z=Je“AebA(dw+wAw)°d-eabcd. (1.1)

(Here ¢” is the vierbein, ® the spin connection, and ¢,,,, the alternating symbol with €;,,,
= +1.) Note that if we regard ¢ and o as fields of dimension one (this is conventional for v,
but ¢ is usually regarded as a field of dimension zero), then every term in (1.1) has dimension
four, so we might think that generél relativity is renormalizable in four dimensions. This is not
so; where is the mistake?

The error is that if ¢ and w have positive dimension, the short distance behaviour must be
governed by ¢ = w = 0. This is what I mean, in general relativity, by the ‘unbroken phase’
with local general covariance restored. But we do not understand four-dimensional general
relativity in the ‘unbroken phase’. Mathematically, we cannot expand (1.1) around e = w =0
because there is no quadratic term. Physically, gravitons could not propagate in such a
region, so in four dimensions the interface between the broken and unbroken phases must be
quite subtle. ‘

In 241 dimensions, the story is different. Once initial reluctance is overcome, the action,

¥ = f(e”/\ (do+o Aw)*+ A A Ae) €, (1.2)

(I have incorporated a cosmological constant term), can readily be expanded around ¢ = w = 0.
What is more, the resulting expansion (if placed in the framework of gauge theory, as is made
possible by observations in (Achicarro & Townsend 1986; Witten 1989a4) is renormalizable
by power counting, and is easily seen to be finite. Given that (1.2) makes sense and is finite in
the unbroken phase, it can be expanded around any classical solution without spoiling the
finiteness.

[ 33 ] 24-2
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Macroscopically, ¢ and @ can be given the usual riemannian interpretation of general
relativity. Microscopically, this is not so. After all, the short-distance régime is an expansion
around ¢ = 0, and a space-time point with ¢ = 0 (or even dete = 0) is a singularity from the
standpoint of riemannian geometry. In a gauge theory interpretation, we do not regard such
occurrences as singularities, and this is a crucial departure from the riemannian interpretation.
Actually, in the gauge theory interpretation, ¢ and w can be gauged away locally, so in a very
precise sense there is ‘nothing’ locally. Nevertheless, in the large, one has macroscopic space-
times. (These macroscopic space-times are empty, and have only global dynamics, because
there are no gravitons in 2+ 1 dimensions. It is this that makes (24 1)-dimensional gravity
simple, while the incorporation of the unbroken phase will be vastly more difficult in 3+1
dimensions.)

I would like to believe that something like this occurs in nature, but far more subtle, because
there are signals propagating in the ‘broken phase’ and the interface between them must be
at least as subtle as in Qcp.

In seeking such an understanding, we are in the situation of the proverbial man who has lost
his key and is looking for it in the dark. There is little to do except to look under a well-lit lamp-
post and hope for the best. But it is up to us to pick a promising lamp-post to look under. The
missing key is the geometrical key to string theory. My own favourite lamp-post — about which
I will say a few words in the next section — is the investigation of geometrically interesting
structures associated with quantum field theory, in dimensions ranging from two (the world-
sheet) to four (the dimension of space-time, at least macroscopically). These are the most
interesting dimensions in geometry, topology and physics. The idea that to understand two-
dimensional field theory one must get out of ‘flatland’ and find a higher-dimensional
perspective was originally advocated by Sir Michael Atiyah; I am grateful for the inspiration
he has provided. "

2. HIGHER SYMMETRIES IN CONFORMAL FIELD THEORY

Let us first recall that in four space-time dimensions, the spin of a massless particle is a
representation of SO(2) and so is an integer or half-integer. Thus fermions, gauge bosons and
gravitons may have positive or negative helicity. The chiral decomposition for fermions is one of
the central facts in particle physics, but this is much less true for bosons, though the polarization
of light is certainly one of the basic observations in electromagnetism, and in Qcp the self-dual
Yang-Mills equations, E,= Em (2.1)
do enter. The chiral decomposition is less important for bosons because it cannot be made
locally.

Twistor theory (for introductory articles see Lerner & Sommers (1978)), in which four-
dimensional space-time R' is replaced by a higher-dimensional space CP®, exhibits a
remarkable higher symmetry of the chiral or self-dual theory. All information is encoded
globally. The challenge in twistor theory has always been to combine the left-handed and
right-handed theories. (A proposal was made in Witten (1978) and Isenberg et al. (1978). It
remains to be seen if this proposal can offer any guidance for conformal field theory.) This is
a difficult problem, because the Einstein and Yang—Mills equations are not ‘rational’ in the
language of conformal field theory.

[ 34]
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The chiral decomposition in four dimensions has, of course, an analogue in two dimensions
in the decomposition in left-movers and right-movers. This decomposition is powerful
primarily in the so-called rational conformal field theories. Its use in that context is practically
the only truly two-dimensional tool we know of in conformal field theory. When this tool is not
available, we know scarcely more about conformal field theory in two dimensions than in four
dimensions. .

One way that the chiral decomposition enters in conformal field theory is this. Let us work
on a Riemann surface X of genus g, with the moduli denoted as m'. A conformal field theory

-is said to be ‘rational’ if its partition function Z(m', m’) has an expansion,

k
Z(m',m) = Azlfa(m‘)f;('ﬁ’), (2.2)
as a sum of products of holomorphic functions f, and anti-holomorphic ones f. If this is so, the
{/,(m")} span a finite-dimensional vector space #; canonically associated with X. £ may now
be regarded purely as an oriented, topological surface; the moduli have been buried as
arguments of the f,(m"), and forgetting the origin of the f;s, we now merely think of them as
a basis of a vector space 5.

Friedan & Shenker (1987) urged us to consider the behaviour of the #; as X degenerates.
For instance, we consider the degeneration of a surface 2 of genus g to surfaces X, X, of genus
& and g, (with g, +g, = g). As indicated in figure 1, it is natural to think of such a process as
a time-dependent process in which a surface of genus g, + g, enters in the past and two surfaces
of genus g, and g, emerge in the future. Such a space-time history naturally gives a three-
manifold. To begin with, it appears that on this three-manifold there is a preferred ‘time’
coordinate, as it really represents a one-parameter family of two-dimensional configurations.
I claim, however, that this is an illusion, and that one can consider the picture sketched in
figure 1 to have full three-dimensional symmetry.

time

Ficure 1. A Riemann surface of genus two breaking into two surfaces of genus one.

To further elaborate this c.laim, recall that in such theories the primary fields ®,(z,z) have
decompositions

D,(2,2) = @i(2) Pi(2), (2.3)
where the ¢,(z) are holomorphic but not quite local. In fact, the n-point correlation function,
Gryoesty(@t0220,) = P4 (21) - 91, (20) s (24)

is a multivalued function with, say, £ branches, which we will call G}
[35]

in,a=1,...,k.
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Forgetting about the origin of the G’s and just thinking of them as a basis of a vector space,
we get a vector space . ; ., that depends on the surface 2’ as a topological surface with
n points labelled as i, ..., ,. The moduli z* are irrelevant; they have disappeared as arguments
of the G°.

When studying a multivalued function, such as the correlation function (see equation
(2.4)), it is important to study the monodromies, that is, the linear transformations of the
branches G” that occur when the points z, loop around one another. It is convenient to think
of the z, as n points on the Riemann sphere (or complex plane C), that loop around one another
in the course of time, forming a braid (figure 24) in three-space. In figure 24, only the
topology of the braid is relevant. Thus one may make arbitrary time-dependent diffeo-
morphisms of the plane C in which the points are moving in figure 2a. I claim, though,
that there is a higher, three-dimensional symmetry in figure 24. In fact, if one glues together
the top and bottom of the braid under discussion, one forms (see figure 24) a knot. It turns
out that one should think of this knot as an intrinsically three-dimensional object; that is, we
now allow full three-dimensional diffeomorphisms.

(a) ®

N

/// \\\ //’ > \
/ ’ N \
/ // / \\ \
[ \
P! 1
. '
\ !
- \ \\ - / /
\ /
f N -/
\\ // \\‘,/

time

_——_———

Ficure 2. A braid (a) whose ends can be joined to make a knot (b).

To justify these assertions, one must obtain the vector spaces #s and ¥ ; ., from a three-
dimensional viewpoint. We have been urged (Atiyah 1988) to look to quantum field theory to
provide this framework, and for physicists this is certainly natural.

Of course, a three-dimensional lagrangian,

&z =J dxdydt W(g,,0¢,) (2.5)

(M denotes space-time and ¢, are some fields), will, upon quantization, associate a Hilbert
space #'5 to every Riemann surface 2. If & is generally covariant, #; will depend on 2 only
as a topological surface.

So to understand the three-dimensional symmetry of two-dimensional conformal field
theory, we look at generally covariant three-dimensional quantum field theories. General
covariance does not allow us to introduce an a priori metric on M. If there is a metric at all,
it must be a dynamical variable. But if so, the quantum wave-functions will depend upon the
metric, and the quantum Hilbert spaces will be infinite dimensional. As we want finite-
dimensional spaces (to agree with rational conformal field theory), we must avoid this, so we
must consider three-dimensional theories in which general covariance is achieved with no metric
at all. Thus we must relate two-dimensional conformal field theory to the unbroken phase of
three-dimensional gravity, in which the metric is irrelevant.

[36]
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The basic example seems to be Chern-Simons gauge theory. So (Witten 19894) we pick a
compact gauge group G and a positive integer £. We introduce a gauge field 47(x) and write
the lagrangian

$=LJ Tr(AANdA+24AANA). (2.6)
an )y .
No metric is needed, so this is generally covariant.

The reason that the quantum field theory with this lagrangian is exactly soluble is that this
theory is trivial locally. For instance, at the classical level the Euler-Lagrange equation for this
theory is Ff; = 0, and implies that 4, can be gauged away locally. Thus as in twistor theory,
all information is to be encoded globally.

Quantum mechanically, to construct the Hilbert space 55 associated with a riemannian
surface X, we pick the gauge 4, = 0. The Gauss law constraint 0 = 6.2 /845 = F{, then tells us
to consider only flat corrections. After dividing by gauge transformations, the phase space that
must be quantized is what I shall call .#;, the moduli space of flat G corrections on Z, up to
gauge equivalence. .y is a compact symplectic manifold, and its quantization gives the
mysterious Hilbert spaces # of G current algebra at level k. If one repeats this in the presence
of static charges in representations R, ,...,R, of G, one gets more general Hilbert spaces
H,4.,....1, of multivalued correlation functions (see equation (2.4)) with @, being a current
algebra primary field in the representation R,. In turn, the latter spaces are essentially the Jones
braid representations (Jones 1985) that are associated with the celebrated Jones polynomial of
knot theory; the relation of these spaces to conformal field theory was first perceived by
Tsuchiya & Kanie (1988).

One might view these mysterious Hilbert spaces 5’5 as rather esoteric objects, but in fact, the
whole current algebra theory in two dimensions can be reconstructed from the topological
theory in three dimensions. As explained in the last few pages of (Witten 1989), this is done
by quantizing the Chern—Simons theory on Riemann surfaces with boundary. For instance, we take
2 to be adisk D. Taking M to be D x R!, with R' denoting ‘ time’, the lagrangian (see equation
(2.6)) is only gauge invariant under the group G, consisting of gauge transformations that
are 1 on the boundary of D. Quantizing in 4, = 0 gauge, the Gauss law constraint still implies
F$, =0, so (as D x R! is simply connected) one has

Ay(x,y) =0,U- U, 2.7)
where Ux,y) ~ Ulx,y)'V (2.8)

for any constant group element V (because U— UV leaves A unchanged in (equation
(2.7)). Up to gauge transformation by G,, only the value of U on the boundary of D
is relevant. The boundary of D is a circle §', which we may parametrize by an angle 6,
0 < 6 < 2n. So U(6) defines a point in the loop space £G of G; more exactly, in view of the
equivalence of equation (2.8), we should think of U(f) as a point in the homogeneous space
ZG/G. Thus, it is £G/G that is to be quantized. According to Segal (1981), quantization of
£G/G gives the irreducible (vacuum) representation of G current algebra at level £.

More generally, by quantizing on an n-holed surface of genus g (figure 3) one can study the
n-point functions in genus g from the three-dimensional viewpoint.

It is not difficult to show abstractly that any rational conformal field theory gives rise
automatically to a three-dimensional generally covariant theory. One approach to proving this

[37]
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Ficure 3. A surface of genus one with four holes.

(suggested to me by W. Thurston) involves decomposing a three manifold via a Morse
function, by using the behaviour of the #; under degeneration of 2 to define transition
amplitudes in pictures such as that of figure 2, and then verifying that the choice of Morse
function does not matter. Details will be described elsewhere.

More concretely, though, Moore & Seiberg (1989) have recently shown that G/H models
may also be interpreted as Chern—Simons theories of an appropriate group (essentially G x H).
It is easy to see that this is also true of rational orbifolds, and of certain generalizations of G/H
models that will be described elsewhere. So it is possible to conjecture that arbitrary rational
conformal field theories in two dimensions can be derived from Chern-Simons theories in three
dimensions.

Actually one can make a stronger conjecture along these lines. Apart from the models that
are related to two-dimensional conformal field theories, the only three-dimensional generally
covariant theories I know of that at first sight appear not to be Chern-Simons theories are
general relativity and the three-dimensional reduction of Donaldson theory. But both three-
dimensional gravity (Achicarro & Townsend 1986; Witten 1989 a) and the three-dimensional
reduction of Donaldson theory (Witten 1989¢) have turned out to be Chern—Simons theories.
So one may conjecture that every three-dimensional generally covariant theory is actually a
Chern—Simons theory of some group or supergroup, not necessarily connected or simply
connected. Perhaps this conjecture should be stated only in the context of the unbroken phase
of general relativity.

Integrable lattice models in 1+1 dimensions are also intimately connected with three-
dimensional quantum field theory, as is apparent from the literature of recent years on knot
theory and statistical mechanics, along with the above observations. I will try elsewhere
(Witten 19894d) to elucidate at least part of this connection from a physical point of view.

In conclusion, if one considers rational conformal field theories and their cousins, integrable
systems, in two dimensions, one sees that these are extremely rich systems. There are an
incredible variety of extremely rich facts, related to each other in an incredible diversity of
ways. To bring order to this chaos looks hopeless. But by stepping out of flatland and looking
at things from the vantage point of three dimensions, one can find a more powerful viewpoint,
where rational and integrable systems can be derived from a subtler and more incisive starting
point. This step out of flatland, to a higher vantage point from which wider symmetry can be
seen, is temptingly akin to what we need in string theory. What is more, we have been urged

[38]
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(Atiyah 1988) to take yet another step to four dimensions, the most physical dimension, the
richest dimension for geometry, and the critical dimension for quantum field theory.

This research was supported in part by NSF grant 86-20266 and NSF Waterman Grant
88-17521. ‘
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